

An 82fs_{RMS}-Jitter 102GHz W-Band PLL Using a Power-Gating Injection-Locked Frequency Multiplier-Based Phase Detector

Suneui Park, Seyeon Yoo, Seojin Choi, Yoonseo Cho and Jaehyouk Choi Korea Advanced Institute of Science And Technology (KAIST), Daejeon

Problems of Prior Architectures

Conventional W-Band PLL using Sub-Sampling Phase Detector (SSPD)

To accommodate exponentially increasing data-traffic, the data rates of mobile communication systems are rapidly increasing

- For higher data rates for beyond 5G, even higher-frequency bands need to be considered to use wider bandwidth
- → Need to explore W-band and D-band

- In W-band, amplitude of S_{PD} is reduced by parasitic RC pole (f_{RC}) of PD switch
- $\rightarrow \phi_{\text{ERR}}$ -detection gain of PD decreases
- \rightarrow In-band phase noises from SSPD, g_m , LF increases
- ➔ Since W-band VCO also has poor phase noise, PLL cannot achieve low jitter under 100fs

Concept of Proposed Idea

Proposed W-Band PLL using Power-Gating ILFM-based PD

Architecture of Proposed W-Band PLL

PG-ILFM PD

ЛЛ

 $\boldsymbol{\Phi}_2$

 $\boldsymbol{\varphi}_1$

- Fundamental sampling PD (FSPD): sampling S_{VCO} with S_{ILFM} having same W-band frequency
- Using FSPD, ϕ_{ERR} information can be detected without any loss due to the RC pole of PD switch
- ➔ Power-gating ILFM-based PD can take advantages of FSPD with low reference clock such as 500 MHz ☺
- Main PLL consists of PG-ILFM-based PD, RS, g_m amplifier, LF, and Main VCO to remove ϕ_{ERR} of PLL output
- Freq. Offset Canceller (FOC) consists of RS and g_m amplifier, and LF to cancel freq. offset btw. Main and replica VCOs

Measurement Results

Die photograph

	 65nm CMOS Active area: 0.16mm² Power: 22.5mW 				
Pulse gen.	Power Consumption (mW)				
	M-VCO	8.0			
Input	R-VCO	4.5			
buffer	Gm amplifier	• • •			

Performance Comparison

	This work	ISSCC'09 K. Tsai	TMTT'14 S. Kang	ISSCC'18 Z. Huang	RFIC'14 Y. Chao	VLSI'19 X. Liu	
Process	65nm CMOS	65nm CMOS	130nm SiGe	65nm CMOS	65nm CMOS	65nm CMOS	
Architecture	PG-ILFM-based PD Direct W-band PLL	Direct W-band PLL	Direct W-band PLL	Direct W-band DPLL	50GHz PLL + Push-push(x2)	23GHz PLL + ILFM (x4)	
Туре	Integer-N	Integer-N	Integer-N	Integer-N	Integer-N	Integer-N	
Supply (V)	1.2/0.8	1.2	3.3/2.5/1.2	1.2/0.8	1.2/0.6	N/A	
Output Freq, <i>f</i> _{out} (GHz)	99.5 – 102.5	95.1 – 96.5	92.7 – 100.2	82.0 – 107.6	96.8 - 108.5	80.0-104.0	
Reference Freq, <i>f</i> _{REF} (MHz)	500	375	1500	125	195	100	
Multiplication Factor (N)	199 – 205	256	64	656 – 864	512	800 - 1040	
Reference Spur (dBc)	-42	-52	< -60	< -34	-40	-40	
1MHz PN (dBc/Hz) @ f _{our} (GHz)	−104.3 @102	-75.7 @95.5	−102.0 @95.0	−79.0 @107.6	-88.0 @99.4	-93.0 @100.8	
Jitter _{RMS} , $\sigma_{\rm t}$ (fs)	82 (1k – 300MHz)	2220 (1k – 10MHz)	71 (1M – 1GHz)	278 (1k – 10MHz)	170* (10k – 10MHz)	137 (10k – 10MHz)	
Power, <i>P</i> _{DC} (mW)	22.5	43.7	469.3	35.5	14.1	23.6**	
Active Area (mm ²)	0.16	0.70	0.93	0.36	0.39	0.41**	
FOM _{JIT} *** (dB)	-248.2	-216.7	-236.2	-235.6	-243.8	-243.5	
*Calculated from the PN grap	*Calculated from the PN graph in Fig. 8 of [RFIC'14, Y. Chao] **Power and area only for the W-band ***FOM _{JIT} = $10\log(\sigma_t^2 \cdot P_{DC})$						

Measured phase noise

☺ The proposed W-band PLL achieved the FOMJIT of -248.2dB, which is the best among the state-of-the-art W-band frequency synthesizers

Acknowledgement The chip fabrication and EDA tool were supported by the IC Design Education Center(IDEC), Korea.

